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A model for epidemics on an adaptive network is considered. Nodes follow a susceptible-infective-
recovered-susceptible pattern. Connections are rewired to break links from noninfected nodes to infected nodes
and are reformed to connect to other noninfected nodes, as the nodes that are not infected try to avoid the
infection. Monte Carlo simulation and numerical solution of a mean field model are employed. The introduc-
tion of rewiring affects both the network structure and the epidemic dynamics. Degree distributions are altered,
and the average distance from a node to the nearest infective increases. The rewiring leads to regions of
bistability where either an endemic or a disease-free steady state can exist. Fluctuations around the endemic
state and the lifetime of the endemic state are considered. The fluctuations are found to exhibit power law
behavior.
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I. INTRODUCTION

The study of recurrent epidemics has a long history �1�,
and many models, both deterministic and stochastic, have
been considered. Deterministic models have been used since
the time of Bernoulli and have explained some of the mecha-
nisms in the spread of infectious diseases. However, deter-
ministic models are not sufficient to account for some of the
important stochastic dynamics, such as extinction �2,3� and
sustained fluctuations �4�. From the general theory of finite
Markov chains �5�, it was shown that in stochastic models
the probability of extinction is equal to one in the asymptotic
time limit. Numerical �6–8� and analytic �9� comparisons of
stochastic and deterministic models have been performed.
The numerical results hold for very small amplitude noise as
well as real finite noise. Deterministic susceptible-infective-
susceptible �SIS� or susceptible-infective-recovered-
susceptible �SIRS� models result in an equilibrium endemic
presence of infectives for an appropriate choice of param-
eters. It is clear that stochastic effects may result in very
different dynamics from deterministic models, particularly
when fluctuations and/or extinction occur.

More recently, the study of fluctuations and the spread of
simple models of epidemics have been simulated on large
networks �10–14�. In almost all of these network models, the
epidemic propagates on a fixed network. The epidemic dy-
namics is typically studied as an SIS or SIR model, in which
the population is large and isolated. In addition to the dy-
namics on such fixed architectures, controls based on vacci-
nation have been considered as well �15,16�. Several recent
models have considered epidemics on a network that
changes structure dynamically according to rules that do not
depend on the nodes’ epidemic status �17,18�.

In contrast to the models of a static network or models
with externally applied changes in structure, a new class of
models based on endemic SIS populations on an adaptive
network has been recently introduced �19�. Changes to the
network structure are made in response to the epidemic

spread and in turn affect future spreading of the epidemic.
Here, the governing parameter is one that describes the re-
wiring rate of the network, which is controlled by the frac-
tion of susceptible �S�-infective �I� links. The network alters
dynamically when there are contacts between S and I, and
social pressures �the desire to avoid illness� rewire the con-
tacts to be instead between S and S. Infections are reduced
due to isolation, and for appropriate choices of parameters,
bistability between the disease-free equilibrium and endemic
state has been observed. This is in contrast to static networks
in a large population, where there is typically only a single
attracting endemic or disease-free state. A different model
has been introduced in which susceptible-infective links are
broken �rather than rewired� and later reconnect at random;
this rule for network adaptation also leads to bistability and
other dynamics not observed in static network models �20�.

In this paper, we introduce a recovered, immune class and
consider this slight generalization of the SIS model on an
adaptive network. We examine the structure of the network
and the dynamics of the fluctuations of the epidemic. Our
approach is to combine Monte Carlo simulations and sto-
chastic mean field models for epidemic evolution on evolv-
ing networks. The layout of the paper is as follows. We in-
troduce the model in Sec. II and present its bifurcation
structure in Sec. III. Properties of the network structure are
discussed in Sec. IV. We discuss dynamical properties of the
system, including fluctuations and lifetimes of the states, in
Sec. V.

II. MODEL

We study a susceptible-infective-recovered-susceptible
�SIRS� model on an adaptive network. Epidemic dynamics
on the nodes is as follows. The rate for a susceptible node to
become infected is pNI,nbr, where NI,nbr is the number of
infected neighbors the node has. The recovery rate for an
infected node is r. A recovered node becomes susceptible
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again with rate q, which we define as the resusceptibility
rate.

While the epidemic spreads, the network is also being
rewired adaptively. If a link connects a noninfected node to
an infected node, that link is rewired with rate w to connect
the noninfected node to another randomly selected nonin-
fected node. Self-links and multiple links between nodes are
disallowed.

In examining steady state solutions, it is sufficient to fix
one of the rates, as time may be rescaled accordingly. For
this reason, we fix r=0.002 throughout this paper.

We performed Monte Carlo simulations of this model on a
system with N=104 nodes and K=105 links. �Larger system
sizes with the same node-to-link ratio were also considered.
The major results of this paper do not depend strongly on
system size.� In each Monte Carlo step �MCS�, we randomly
select N nodes and M links, where M is the number of links
that may potentially rewire �susceptible-infected and
recovered-infected links�, and the links are selected from the
pool of links that may rewire. Initial conditions are con-
structed in one of two ways. We either generate a random
�Erdös-Rényi� graph of susceptibles and convert a fraction f
of them to infectives, or we use the final state of a previous
run as an initial condition. Transients are discarded and
simulations run long enough that the initial conditions do not
affect the results.

Following �19�, we also developed a corresponding mean
field model for the system. The mean field model tracks the
dynamics of both nodes and links. PA denotes the probability
of a node to be in state A, where A is either S �susceptible�,
I �infected�, or R �recovered�. PAB denotes the probability
that a randomly selected link connects a node in state A to a
node in state B. We obtain the following mean field equa-
tions for the evolution of the nodes:

ṖS = qPR − p K
N PSI, �1�

ṖI = p K
N PSI − rPI, �2�

ṖR = rPI − qPR. �3�

For example, in the first equation, recovereds are converted
to susceptibles with rate q, and infection spreads with rate p
along each susceptible-infected link. Rewiring does not ap-
pear directly in the node equations, since rewiring operates
on links, but it affects the system implicitly through the num-
ber of susceptible-infected links �KPSI�. We next write a sys-
tem of mean field equations for the links. To close the sys-
tem, we follow �19� and make the assumption for three point
terms that PABC� PABPBC / PB. This assumption leads to the
following system of equations for links:

ṖSS = qPSR + w
PS

PS + PR
PSI − 2p

K

N

PSSPSI

PS
, �4�

ṖSI = 2p
K

N

PSSPSI

PS
+ qPIR − rPSI − wPSI − p�PSI +

K

N

PSI
2

PS
� ,

�5�

ṖII = p�PSI + K
N

PSI
2

PS
� − 2rPII, �6�

ṖSR = rPSI + w
PR

PS + PR
PSI + 2qPRR − qPSR

− p K
N

PSIPSR

PS
+ w

PS

PS + PR
PIR, �7�

ṖIR = 2rPII + p
K

N

PSIPSR

PS
− qPIR − rPIR − wPIR, �8�

ṖRR = rPIR − 2qPRR + w
PR

PS + PR
PIR. �9�

The ordinary differential equations of the mean field
model can be integrated easily with any well-known numeri-
cal integration technique. We choose initial conditions so that
we are near an endemic state. We also note that the model
does support solutions with negative values, but these are
unphysical, and so we ignore them. In the case of stochastic
simulations, we have considered the effects of both internal
fluctuations, modeled as multiplicative noise, as well as ex-
ternal fluctuations, modeled as additive noise. We use a
fourth order Runge-Kutta solver for each of these cases to
generate stochastic stimulations of the mean field. The noise
strength was kept small for both additive and multiplicative
cases, and our stochastic studies were run on stable endemic
branches which were far from the disease-free state com-
pared to the noise levels considered. Thus fluctuations in the
variables did not drive them to unphysical values for the
parameters used here. We also tracked the steady states as a
function of parameters using a continuation package �21�.

III. BIFURCATION STRUCTURE

We first consider the steady state bifurcation structure of
the model. In Fig. 1, we show examples of the average in-
fected fraction versus the transmission rate p. Two steady
states can occur, a disease-free state and an endemic state. In
the absence of rewiring �Fig. 1�a��, the disease-free state
loses stability for very small transmission rates, and only the
endemic state is observed at larger p values. When rewiring
is introduced �Fig. 1�b��, the disease-free state is stabilized
for larger p values. A region of bistability, in which both
endemic and disease-free states are observed, now occurs.
Bistability was observed previously for the SIS model �19�.
Monte Carlo simulation points in Fig. 1 were computed as
follows. To locate the upper branches �endemic state�, we
swept p from larger to smaller values, using the final state of
each run as the initial state for the next run. 5�103 MCS of
transients were discarded, and the steady state was averaged
over 104 MCS. To locate the lower branch �disease-free
state�, we began with a randomly connected network in
which a fraction f of the nodes were infected, while the rest
were susceptible. The system was simulated for 2�104

MCS. f values between 0.025 and 0.9 were tried, and at least
five runs were done for each p value. If the epidemic died
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out in any of the runs, the disease-free state was considered
stable. Due to the stochastic nature of the Monte Carlo simu-
lation, and because the disease-free state is absorbing, stabil-
ity designations are uncertain. It is difficult to distinguish a
weakly unstable state from a weakly stable state with a short
lifetime. Lifetimes of the endemic state are considered in
more detail in Sec. V.

The results in Fig. 1 show fairly good agreement between
the mean field approximation and the Monte Carlo simula-
tion of the full system, and we typically see this level of
agreement in the steady state values, although as we discuss
later, the stability and type of bifurcation sometimes differs.
Using the mean field model, we next explore the bifurcation
structure of the system for a wider range of parameters.

An interesting property of the steady state instabilities ap-
pears when one considers each of the steady state bifurcation
points of the mean field equations. �There do exist branches
of periodic orbits, but since they occur within a very small
range of parameters, we ignore them in this paper. They will
be treated elsewhere.� If the resusceptibility rate q is held
fixed and a bifurcation diagram constructed, we find the ex-
istence of at least two distinct regimes for different q values,
illustrated in Figs. 2 and 3. The instabilities appear as a tran-
scritical bifurcation from the disease-free steady state, a
saddle-node bifurcation of endemic steady states, and a Hopf
bifurcation, from which a branch of subcritical unstable pe-
riodic orbits emanates �not shown�.

In the case where q=0.0064, depicted in Fig. 2�b� for w
=0.04, we show a typical bifurcation plot of stable and un-

stable steady states as the infection rate p is increased. The
dashed lines represent the unstable steady states, while the
solid lines depict the attractors. For low values of p the
disease-free steady state is stable. Tracking along the
disease-free branch, at a critical value of p, an unstable
branch �subcritical� of endemic steady states appears. The
endemic branch becomes stable at the saddle-node point.
There exists a clear region of bistability with coexisting en-
demic and disease-free states for a range of p. If we now
vary the parameter w and track each bifurcation curve, we
obtain the result in Fig. 2�a�. We describe the bifurcation
regions in detail for w larger than 0.1. In region I, we have
only a stable disease-free equilibrium. As we cross into re-
gion II for large w, the disease-free equilibrium is stable, and
there exists an unstable endemic state. Region III exhibits
bistability between the disease-free equilibrium and endemic
state, and region IV has just a stable endemic equilibrium.
We note that at w=0.04, we have the simple saddle-node
transition depicted in Fig. 2�b�, since there is no Hopf bifur-
cation to periodic cycles at that particular w value.
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FIG. 1. Average infected fraction vs transmission rate p. �a�
Static network, w=0. �b� Rewired network, w=0.04. Black dots:
Monte Carlo simulations; solid gray lines: mean field solution
�stable branches�; and dashed gray lines: mean field solution �un-
stable branches�. q=0.0016, r=0.002.
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FIG. 2. �a� Two parameter plot for w and p of the bifurcation
points for steady states when q=0.0064. The heavy dashed line is
the line of saddle-node points �limit points�. The solid line denotes
the Hopf bifurcation points, and the light dashed line denotes the
transcritical bifurcation points �BP�. �b� A bifurcation diagram of
the infective fraction as a function of p, where w=0.04. The squares
denote the saddle-node point and transcritical point. Dashed lines
are unstable branches.
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The previous discussion presented a case for resuscepti-
bility rate q where the limit �saddle-node� and Hopf bifurca-
tion branches are close to each other. The distinction between
the saddle-node and Hopf branches can be seen more easily
if q is lowered to 0.0016, as shown in Fig. 3�a�. In Fig. 3�a�,
for sufficiently large w, as p is increased in region I the
system first undergoes a limit point bifurcation, and then a
Hopf bifurcation as it passes through region II. The Hopf
curve is actually a closed isola in two parameters. The limit
point here is a saddle-saddle point, where a steady state hav-
ing a two-dimensional unstable manifold connects to a
steady state with a one-dimensional unstable manifold. In
both cases, we have bistable behavior for w sufficiently
large, but the region of bistability is much smaller since the
Hopf and transcritical branches are closer together for this
value of q �region III�.

For w=0.04, the mean field endemic steady state loses
stability in a saddle-node bifurcation for q=0.0064 and in a
Hopf bifurcation for q=0.0016. In our discussion of fluctua-
tions in the endemic state in Sec. V, we will refer to q
=0.0064 because the saddle-node bifurcation structure best
corresponds to the scaling of fluctuations that we observe in
Monte Carlo simulations of the full system.

IV. NETWORK GEOMETRY

A. Degree distributions

Rewiring leads to significant alterations in the network
structure. We first consider the degree distribution. Figure 4
shows degree distributions for each type of node in the ab-
sence �Fig. 4�a�� and presence �Fig. 4�b�� of rewiring. In Fig.
4�b�, we averaged over 3�104 MCS. In Fig. 4�a�, the net-
work is static, so we averaged over ten separate runs to ob-
tain better statistics.

Using mean field ideas, we can understand the recovered
and susceptible degree distributions as nodes flow from in-
fected to recovered to susceptible. We outline the calculation
briefly here. However, this approach does not accurately pre-
dict the degree distribution for infected nodes because corre-
lations play a more important role for these nodes, as we will
explain below. For this reason, we cannot write a self-
consistent set of equations for the degree distributions that
could be solved without inputting simulation results.

Let dX,n be the number of nodes in state X �either S, I, or
R� with degree n. Recovered nodes originate when infectives
recover and are lost when they become susceptible again.
The degree of a recovered node can only increase, as other
susceptible and recovered nodes wire to connect to it. This
leads to the following equations for dR,n:

d

dt
�dR,0� = rdI,0 − qdR,0 − kdR,0,

0 2 4 6 8
x 10

−3

0

0.1

0.2

0.3

0.4

0.5

p

I

0 2 4 6 8
x 10

−3

0

0.05

0.1

0.15

0.2

p

w
LP
HB
BP

II

IV

I

III

(a)

(b)

FIG. 3. �a� Two parameter plot of the steady state bifurcation
points when q=0.0016. The heavy dashed line is the line of limit
points. The solid line denotes the Hopf bifurcation points, and the
light dashed line denotes the transcritical bifurcations. �b� A bifur-
cation diagram of the infective fraction as a function of p, where
w=0.04 �same bifurcation diagram in Fig. 1�.

0 20 40 60 80
0

0.02

0.04

0.06

0.08

0.1

pr
ob

ab
ili

ty

(a)

0 20 40 60 80
0

0.05

0.1

0.15

0.2

degree
pr

ob
ab

ili
ty

(b)

FIG. 4. Degree distributions from Monte Carlo simulation for
p=0.002, q=0.0016, and r=0.002. �a� Static network, w=0. All
node types have Poissonian degree distribution. �b� Rewired net-
work, w=0.04. Solid gray line: infectives; dashed line: recovereds;
and black line: susceptibles.
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d

dt
�dR,n� = rdI,n − qdR,n − kdR,n + kdR,n−1 for n � 0,

�10�

where k is the average rate for nodes to rewire to a given
noninfected node. k is given by the ratio of the total rewiring
rate to the number of potential target nodes:

k =
wK�PSI + PIR�

N�PS + PR�
. �11�

Given the degree distribution of the infectives dI,n and the
probabilities appearing in k, Eqs. �10� can be solved for the
degree distribution of the recovereds.

Susceptible nodes originate when recovereds become sus-
ceptible again, and they may be lost when they become in-
fected by a neighbor. As with the recovereds, the degree of a
susceptible increases due to rewiring. Thus the time evolu-
tion of the degree distribution for the susceptibles can be
written as

d

dt
�dS,0� = qdR,0 − kdS,0,

d

dt
�dS,n� = qdR,n − k�ndS,n − kdS,n + kdS,n−1 for n � 0,

�12�

where k� is the infection rate per link into a susceptible node.
We assume that k� is independent of degree, which we know
from simulations is approximately correct �cf. Fig. 5�, and
write

k� = p
PSI

PSI + PSR + 2PSS
, �13�

where the fraction is the ratio of the number of links that can
transmit infection to the total number of links into a suscep-
tible. As with the recovereds, the steady state degree distri-
bution for susceptibles can be computed from Eq. �12�. The
predicted degree distributions for susceptibles and recov-
ereds are overlaid on the actual distributions in Fig. 4�b�,
using Monte Carlo simulation averages for the infective de-
gree distribution and the node and link probabilities. �Note
that the node and link probabilities could instead be obtained
from the mean field system.� Deviations between the predic-
tion and simulation are smaller than the width of the curves
in Fig. 4�b�, so they are indistinguishable.

The degree of infected nodes, however, cannot be pre-
dicted by this approximate procedure. We might expect that

d

dt
�dI,0� = k�dI,1 − rdI,0,

d

dt
�dI,n� = k��n + 1�dI,n+1 − k�ndI,n

+ k�ndS,n − rdI,n for n � 0, �14�

where

k� = w
PSI + PIR

PSI + PIR + 2PII
�15�

is the per link rewiring rate for links connecting to an infec-
tive �i.e., the ratio between links that can potentially rewire
and total links into infectives�. Figure 5�a� compares the ac-
tual degree distribution for infectives with the distribution
predicted by Eq. �14�. The number of low degree infectives
is significantly overpredicted. This occurs because the mean
field approximation in Eq. �15� is not accurate for infectives.
Figure 5�b� shows the fraction of infected neighbors that a
node has, depending on its degree and disease status. Results
are averaged over 3�104 MCS. Low degree infected nodes
tend to have a much higher fraction of neighbors that are also
infected, due to transmission of the disease. Once infected,
these neighbors will not rewire away until recovered, so the
rewiring rate per link is smaller than one would expect from
the mean field k� in Eq. �15�. Predicting the infective degree
distribution accurately would require a theory that accounts
for these correlations in infection status of neighboring
nodes, which is beyond the scope of the present work.

B. Distance from an infective

We next consider the distribution of distances from a
given node to the nearest infective. These distances are of
interest because they relate to the number of hops the disease
must make in order to reach an uninfected individual. The
disease cannot propagate through recovered nodes until they
become susceptible again, so the distance from the nearest
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FIG. 5. �a� Actual �black line� and predicted �dashed gray line�
degree distributions for infecteds. �b� Average fraction of neighbors
that are infected vs degree. Solid gray line: infecteds; dashed line:
recovereds; and black line: susceptibles. p=0.002, q=0.0016, r
=0.002, and w=0.04.
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infective does not necessarily correspond to a path for dis-
ease propagation. However, we note that rewiring acts only
on links to infectives, and thus the chains of susceptible and
recovered links that this metric identifies will persist until the
infection leads to their interruption. Figure 6�a� shows the
distribution of distances from the nearest infective in the
presence and absence of rewiring. To display the effect on
the network geometry alone, rather than on the steady state
number of infections as well, we have used a smaller q value
for the w=0 case so that the total number of infectives is
approximately the same in both curves. Results were aver-
aged over 3�104 MCS, sampled every 100 MCS after re-
moving transients. Rewiring significantly decreases the num-
ber of nodes that are directly connected to an infective.
However, despite the rewiring, only a small fraction of nodes
are fully disconnected from the infection.

Figure 6�b� shows a semilog plot of the w=0.04 case to
display the tail of the curve at larger distances. An approxi-
mation based on random networks is also shown. Given how
far from Poisson the degree distributions are when the net-
work is rewired, it is somewhat surprising that the form of
the decay in the distribution of distances can be predicted
from random networks. Beginning with S, I, and R nodes in
numbers matching that observed in the average of Monte
Carlo simulations, we generated 1000 random networks and
added randomly selected links until the number of S-S, S-I,
S-R, etc. links also matched that from the average of Monte
Carlo simulations. As Fig. 6�b� shows, the distribution of
distances for these random networks decays in the same way
as it does in an adaptive network. Thus the form of the dis-

tribution of distances depends mainly on local dynamics
�node and link dynamics� rather than on the details of longer
range correlations. The main difference is that the adaptive
network has some nodes fully disconnected from infected
components, while the random networks do not. Most of
these nodes are recovereds with degree 0, which appear
when infectives of degree 0 recover. Each type of node in the
random networks has a Poisson degree distribution, so they
do not generally have nodes of degree 0.

V. FLUCTUATIONS AND OTHER DYNAMICS

In the previous sections, we have considered steady states
and long time averages of network properties. We next con-
sider fluctuations and dynamical properties of the endemic
state.

A. Fluctuations near bifurcation point

Near the bifurcation point where the endemic state loses
stability, the number of infectives has larger fluctuations due
to noise overcoming weak attracting forces �22�. Fluctua-
tions in the SIRS model are significantly larger than those in
the previously studied SIS model. We quantify the fluctua-
tions by computing the standard deviation divided by the
mean for long time series in both the Monte Carlo and mean
field simulations. In Fig. 7, we plot the fluctuations as the
infection rate p is swept toward the bifurcation point. Monte
Carlo results were computed from 5�105 MCS time series
sampled every ten MCS, except for the two smallest p val-
ues, for which shorter time series were used due to the
shorter lifetimes of these states. All time series were longer
than 105 MCS.

For comparison, the mean field equations can also be con-
sidered near equilibrium in stochastic form. In general, near
equilibrium fluctuations can be modeled as additive noise
�23�, and we do so here. �We do note that multiplicative
noise effects generate results similar to those reported for
additive noise.� We assume the mean field is of the following
form:

X� = F�X� + ���t� , �16�

where F�X� is the mean field system in Eqs. �1�–�9�, and
���t���t��	=��t− t��. � is the noise strength, or amplitude.
We have considered both additive noise and multiplicative
noise cases in the simulations of the stochastic attractors near
the endemic state and have computed the standard deviation
divided by the mean as described above for ten random ini-
tial conditions near equilibrium and ten realizations.

We recall from Figs. 2 and 3 that depending on the value
of the resusceptibility rate q, the bistability regions III are
vastly different. Specifically, for q=0.0016, we saw that for
sufficiently large wiring rates, the saddle–saddle and Hopf
bifurcation branches were well-separated, whereas for q
=0.0064, the branches were very close for small values of
rewiring rate w. In Monte Carlo simulation, we have not
observed the Hopf bifurcations or stable periodic oscillations
seen in the mean field, even for system sizes as large as 4
�105 nodes. Although the value of q=0.0064 we use in the
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FIG. 6. Distribution of distances from the nearest infected node.
� indicates nodes that are completely disconnected from an infec-
tive. �a� Solid black line: with rewiring �w=0.04, p=0.002, and q
=0.0016�; dashed gray line: no rewiring �w=0, p=0.002, and q
=0.0009�. �b� Black line: rewired case �same as in �a��; and gray
line: distribution for random graphs, as described in text.

LEAH B. SHAW AND IRA B. SCHWARTZ PHYSICAL REVIEW E 77, 066101 �2008�

066101-6



mean field fluctuation study is different from that used in the
Monte Carlo, the local bifurcation structure is similar when
w=0.04, in that it is a true saddle-node bifurcation point.
This has been checked by examining the local linear vector
field at the saddle-node point in question. Therefore, al-
though the mean field has different q value, the bifurcation
structure is equivalent to that observed in Monte Carlo simu-
lation, so we use q=0.0064 in the fluctuation study.

The computations reveal that the fluctuations exhibit
power law scaling, as shown in the log-log plots of Figs. 7�b�
and 7�d�. On the horizontal axis, we plot ln�p− pc�, where pc
is the critical point at which the endemic state loses stability.
For the mean field, the bifurcation point is known exactly by
examining the eigenvalues of the linearized vector field at
the steady state. We approximate the Monte Carlo bifurcation
point pc as the value that produces the most linear plot. Al-
though both cases have power law scaling, the exponents are
different: −0.59 for Monte Carlo and −0.27 for mean field.
The scaling exponent for the full system depends on the
number of nodes. Whether it will approach the mean field
value in the limit of infinite system size is a subject for
further study. We note that fluctuations near a Hopf bifurca-
tion point, as occurs in the mean field for q=0.0016, would
produce a very different form of scaling from the saddle-
node case. One of the reasons for the difference is that the
instability is then two-dimensional and underdamped �24�.
This is known to cause very different scaling laws in generic
problems, which can be much slower �25�.

To motivate the power law scaling of the fluctuations, we
consider scaling near a generic saddle-node bifurcation. The
simplest generic case of a saddle-node bifurcation for equi-
librium points comes from solving for zeroes of the vector
field at a parameter value where one eigenvalue of the Jaco-
bian passes through zero. Standard normal form analysis al-
lows one to consider the generic problem of a saddle-node

bifurcation. In one dimension, the stochastic differential
equation of a saddle-node bifurcation may be modeled as

dxt = �a − xt
2�dt + �dWt. �17�

The parameter is a, and we suppose noise is additive. Since
noise in general may cause a “shift” in parameter values
where the saddle-node point disappears, we assume that the
noise near the bifucation is sufficiently small, where dW /dt
is a white noise term, and dW is a Brownian increment.

We further assume that we are always near the attracting
branch of the saddle node, so we are in a near equilibrium
setting. Such an assumption allows us to examine the station-
ary probability density function �PDF� of the stochastic dy-
namics by employing the Fokker-Planck equation near
steady state. For the stochastic differential equation, Eq. �17�,
the PDF is well known �22� and is given by

p�a,x,�� = Ne2�ax−x3/3�/�2
. �18�

Here N is a normalization constant. We compute the first and
second order moments directly using Eq. �18� and then take
the ratio of the standard deviation to the mean. Since a=0 is
the value of the saddle-node point, we examine the fluctua-
tions in the neighborhood of that value. The results, shown in
Fig. 8, display power law scaling.

B. Delayed outbreaks

We next consider phase relationships between the fluctu-
ating variables. We tracked the number of infectives in the
system at each time point as well as the number of nodes that
neighbored an infective �i.e., the number of SI and IR links�.
In the rewired system, fluctuations in the number of infec-
tives lagged behind fluctuations in the number of infective
neighbors that are not themselves infected, as shown in Fig.
9�a�.
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FIG. 7. Fluctuations in infec-
tives �standard deviation divided
by mean� vs infection rate p near
the bifurcation point: �a� Monte
Carlo and �b� mean field. Curves
are to guide the eye. Log-log plots
�data points with best fit lines�
show power law scaling for both
Monte Carlo �b� and mean field
�d�. Monte Carlo parameters: q
=0.0016, w=0.04, and r=0.002.
Mean field parameters: q=0.0064,
w=0.04, r=0.002, and �=0.0001.
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Both mean field and Monte Carlo simulations of the full
system displayed this effect, and we studied their depen-
dence on the rewiring rate. Monte Carlo simulations were
sampled every 1 MCS for 3�104 MCS after discarding tran-
sients. The mean field was sampled every 1 time unit for 5
�104 units. Additive noise was included in the mean field
equations with noise strength �=0.0001. Cross correlations
between the infectives and the infective neighbors were com-
puted for varying shifts between the time series, and the lag
maximizing the cross correlation was identified. As shown in

Fig. 9�b�, rewiring leads to increasing lag times and delayed
outbreaks. We also computed time lags for the mean field
model with multiplicative noise and found the same trend of
increasingly delayed outbreaks with larger rewiring.

C. Lifetime of endemic steady state

The final dynamic effect we consider is the lifetime of the
endemic steady state. Because the system is stochastic and
the disease-free state is absorbing, all parameter values will
lead to eventual die out of the disease in the infinite time
limit. These lifetimes become shorter and die out is more
easily observed in the bistable regime near the bifurcation
point where the endemic state has weak stability. We mea-
sured the dependence of the lifetimes on the infection rate p.
For each p value, we prepared a steady state initial condition
and computed multiple duplicate runs to obtain a distribution
of lifetimes. �We computed 100 duplicate runs for all but the
two highest p values and over 25 runs for the two highest.�
We then calculated the average lifetime T for each p. For a
generic saddle-node bifurcation in one dimension, it is ex-
pected that ln T is a linear function of �p− p0�3/2, where p0 is
the bifurcation point �26,27�. We obtained spurious results
for our system with 104 nodes, possibly because the small
system size led to rapid die out and we were unable to obtain
good statistics near the bifurcation point. Away from the bi-
furcation point, the system has a weakly damped oscillatory
component and behaves like a focus. By switching to a sys-
tem with 4�104 nodes and 4�105 links, we were able to
run longer simulations closer to the bifurcation point and
operate in a regime where only one dimension mattered and
the oscillations could be ignored. Preliminary scaling results
are shown in Fig. 10. We used the bifurcation point p0 that
gave the best fit line, which led to an R value of 0.99. The
scaling results appear consistent with expectations, but fur-
ther study and better statistics are needed.

VI. CONCLUSIONS AND DISCUSSION

We have explored the stable states, network properties,
and dynamics of an SIRS model on a network with adaptive
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FIG. 8. Fluctuation size of a generic saddle-node bifurcation as
a function of bifurcation parameter a near the bifurcation point
using Eq. �18�. The noise level used is 0.005.
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FIG. 9. Delayed outbreaks due to rewiring. �a� Monte Carlo
time series. Black line: infectives and gray line: neighbors of infec-
tives. Curves are scaled in arbitrary units for comparison of peak
times. p=0.0065, w=0.09, q=0.0016, and r=0.002. �b� Time in
MCS by which infectives lag behind infective neighbors vs rewir-
ing rate. Solid black line: Monte Carlo and dashed gray line: mean
field. p=0.0065, q=0.0016, r=0.002, mean field noise strength �
=0.0001.
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rewiring. As with the SIS model studied previously by Gross
et al. �19�, the rewiring leads to bistability of the endemic
and disease-free states. A mean field version of the model
predicted the steady states with good numerical accuracy and
was also valuable in studying the fluctuations of the system,
with the caveat that one must be near the appropriate type of
bifurcation in the mean field to obtain corresponding results.
With the addition of the recovered class and resusceptibility
rate, we can control the width of the bistability region by
manipulating the location of the bifurcation points.

The fluctuations in the infectives near the bifurcation
point showed power law scaling. This agreed with mean field
results and our expectations for scaling near a saddle-node
bifurcation.

We studied the effects of the rewiring on the network
geometry. Degree distributions were altered, and mean field
arguments were able to predict the distributions for suscep-
tibles and recovereds. However, a new analytical approach
that includes correlations is needed to fully understand the
degree distributions.

The other network property we considered was the distri-
bution of distances from noninfected nodes to the nearest
infective, a quantity that may be important in disease spread-
ing and its control. This distribution depended primarily on
node and link dynamics rather than on higher order correla-
tions, so it could be predicted from random graphs. It is
possible to compute the distribution of distances from an
infective analytically for random graphs, but this calculation
is awkward for a three species system �S, I, R� and does not
have a simple functional form, so we have omitted the dis-
cussion of analytical results here.

Delayed outbreaks were observed in the rewired system.
Peaks in the infective fraction lagged behind peaks in the
number of nodes that neighbor an infective. For the param-
eter values studied here, the lag time is on the order of 10%
of the mean infectious period, which might be considered a
very short lag time. However, the parameters in this study
were not selected to correspond to any specific disease. For
most real diseases, we would expect a much slower rate for
immunity to wear off and recovered individuals to become
susceptible again, compared to the mean infectious period.
This regime would be more difficult to study in Monte Carlo
simulations, since the average number of infected nodes
would be much smaller than seen here. Further work is
needed to determine whether the observation of delayed out-
breaks due to rewiring would persist or perhaps become
more significant in a physically realistic system.

Finally, we considered lifetimes of the endemic state near
the saddle-node bifurcation where it loses stability. In order
to achieve extinction from a steady state, the disease must
first overcome the attractive forces, which are weak near the

bifurcation point. Due to the generic local topology of the
saddle-node structure, the escape rate is well-characterized
analytically �25�. We found that the Monte Carlo simulation
agrees qualitatively with the escape times and yields a well-
known power law. However, this is for parameters in which
endemic and extinction states are not too far apart. Such
extinction regimes can be analyzed using a Fokker-Planck
approach �28�. Although preliminary results are in agreement
with the expected scaling, further study of the lifetime scal-
ing is needed, including in regimes that are physically real-
istic, and where the usual extinction rates cannot be modeled
with a Fokker-Planck approach.

In addition to the directions for further research men-
tioned above, a major challenge is to develop network geom-
etries and rewiring rules that are more consistent with human
social networks. Real social networks are expected to have
community structure �29�. The networks studied here did not.
In our rewired networks, the number of connections from
noninfected nodes to infected nodes was reduced in compari-
son to a random network, while the number of connections
between noninfected nodes was increased. However, this
process does not induce a community structure on the net-
work in the Newman-Girvan Q-modularity sense �30�. Re-
wiring was a nonlocal effect; new neighbors were chosen at
random among all noninfected nodes in the network rather
than introducing a local structure. It has been shown for
static networks that community structure affects disease dy-
namics �31,32�, and we expect an impact in adaptive net-
works as well.

In the current work, an ideal setting was proposed where
noninfected nodes were assumed to behave rationally and
have perfect knowledge of the disease status of their current
neighbors and potential new neighbors. It would be of inter-
est to consider a situation in which not all contagious indi-
viduals appear ill or know that they are contagious, as might
be the case for a sexually transmitted disease possessing as-
ymptomatic individuals. This effect might be modeled by
simultaneous spreading through the network of both the dis-
ease and information about the disease. If the current model
is extended with information and community structure, so-
cial dynamics could be extrapolated to improve contact trac-
ing and epidemic control in organized populations with local
structure.
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